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Introduction -

[I] _ [Y] [V] In a network with s nodes, the s complex voltages and the s
complex node currents are linked by s equations with

complex variables and coefficients represenfing the internal network
constraints.

The 2s complex voltages and currents are equivalent to 4s real variables. On
the other hand, we have 2s linear equations with real variables and
coefficients, which are obtained by separating the real and imaginary parts (or
the modules and the arguments).

Therefore, from the 4s real variables, 2s can be fixed arbitrarily and the
remaining 2s are calculated by solving the system of equations of the network.

When the system is solved, and therefore all voltages and currents are known,
we can calculate:

- P and Qinjected or absorbed by the nodes
- branches powers and currents

- network losses (both active and reactive, corresponding to the balance
between powers injected and absorbed by the nodes).

If the network operating conditions can be represented imposing as external
constraints only voltage/current amplitudes and phases, the power flows can
be calculated by solving a simple system of linear equations.



Introduction -

In practice, the operating conditions imposed on the networks
(external constraints) are expressed by fixing other parameters. This
implies that the system of equations to be solved becomes non-linear.
In particular:

In the load buses P and O demands are (usually) fixed (P;* and Q,*).

In practice, it is inappropriate to represent the various loads by
constant admittances (i.e., asynchronous motors absorb active power
almost independently of the voltage, with variations in the range of
+10%; gas-discharge lamps and incandescent lamps, even if they
absorb power that varies with the voltage, do not follow a quadratic
law).

The dependency on the voltage of the P=P, 1
active/reactive powers absorbed by the loads V,
can be expressed by exponential models where .
the values of the exponent coefficients depend Vi’
to the nature of the load and, in some cases, it can 0 =0, 7
also be set = 0. 0



Introduction -

For the generator buses, it is convenient o fix the P that is injected from them
into the grid (P;*) and the amplitude of voltage V (V;*).

» For power transmission networks, the value P* that each power plant is
asked to provide (at a given time step) is usually selected in accordance to
their dispatching.

> Fixing the V;*, rather than the Q, is convenient for the following reasons:

1.

2.

fixing the voltage (typically at a value between the rated voltage 7V,
and 1.1V, according to the location of the power plants and the
distance with respect to the loads), means that we set the voltage in
the network key points (often scattered throughout the network). So the
solution of the equations provides a solution acceptable for the
network operation. This choice also facilitates the convergence of the
iterative procedure for the solution of the LF equations (see next).

The QO of the generafors can vary between the max-limit (i.e.,
generators over excitation) and the min-limit (i.e., generators under
excitation) by simply varying the their excitation current. Therefore, it is
convenient to accept to operate each power plant with the O that is

provided by the calculation and which allows to obtain the
predetermined voltages.



Introduction -

We have justified that both for loads and generators, it is convenient to fix the
P.

It should be noted, however, that it is not possible to assign arbitrary values of P
at all nodes because this would be equal to arbitrarily setting the network
losses, which is clearly absurd. In fact, the losses are not known initially, but are
calculated together with the power flows, after having solved the LF
equations.

It is therefore allowable to arbitrarily set no more than (s-1) active powers.

Consequently, for one of the nodes, that can be chosen to coincide in the
numbering with the s-th node, the amplitude and the phase of the voltage are
fixed. This node is called slack bus, as the active power, for this node, is equal

to the balance between the active powers of generators/loads and the
power losses.

As slack bus we can choose a generator where a significant power is installed.
In this node the phase of the voltage is fixed to zero; this is equivalent to
measuring the phases of the other (s-1) node voltages using as a reference the
slack bus voltage phasor.




INnfroduction -

Summary of the parameters that are imposed and the ones that
need to be determined for the various types of buses

Type of bus Imposed parameters Parameters to be
(in total 2s) determined (in total 2s)
Generator buses | Pg Vo Qg arg (Vg)
Load buses P, Oc Ve arg (Ve)
Slack bus Vi arg (V) =0 Py On
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Cartesian Coordinates Formulation -

We will use the following notations:

V=V + ]V voltage of the i-th node;
V=V + ]V voltage of the /-th node;
¢ 14 14
Y =G + jB i element of the admittance matrix [Y] ;

The complex power injected, or absorbed, from the i-th node can be
written as:

S=P+j0O =VI,

l

replacing the expression that gives the complex current inserted or
extracted from the node i we get:

S, =VIV.V.=(V+V)X(G,-jB) (V.- V)

¢
¢=1



Cartesian Coordinates Formulation -

Then, the injected active and reactive powers of the i-th node are:

P =V S(GV,-BY,)+V S(BV +GV,)

0 =-V S(BV +GV)+V'S(GV -BV)

The module (squared) of the voltage at the i-th node are:

‘/i2 — ‘/i‘2 + ‘/i"Z



Cartesian Coordinates Formulation -

The entire system of equations in cartesian coordinates assumes the
following form:

<

i=s for the unique slack bus

0=V
Vi*z = Vl.'2 + sz =1,2,....g and i=s, for the g
generator buses + the slack bus

.V")+V."E(B. V +G V") i=1,2,...gtu, for the g generator
= “ teN buses + u load buses

QO = —Vi'E(BZ.M +G\V ) +V (GMVZ' = B,.éVe") i=g+1,..., g+u for the load buses

The number of equations is: 1+(g+1)+(g+u)+u=2(g+u+1)=2s. -
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Polar Coordinates Formulation -

By indicafing with ¢,, 6; respectively the arguments of the current and voltage
of node i and with y,,the argument of the admittance Y, , we can write

\7l_ = Vl_ejﬁi voltage at the i-th node;
Z = Il,em' current at the i-th node;
YM = Yl-gem element izof the admittance matrix [Y];

The complex power at the i-th node can be written as:
Si =I)i+jQi =‘7ili

Using again the network admittance matrix to express the injected node
current, we obtain:

S =VIY.V, =SVY.V = JVVYe "



Polar Coordinates Formulation -

Then, the active and reactive powers at the i-th node will be:

P.=SVVY,cos (0 -9,~y,)
< ~ (LF.1)

Q =>YVVY,sin (9 -9, -v,)

¢ il




Polar Coordinates Formulation -

The system of equations for the solution of the load flow problem in
polar coordinates assumes therefore the following form:

i=s for the unigue slack bus

=1,2,....g and i=s, for the g
generator buses + the slack bus

i=1,2,...gtu, for the g generator
buses + the u load buses

i=g+1,..., gtu, for the load buses

The number of equations is: 1+(g+1)+(g+u)+u=2s. -



Polar Coordinates Formulation -

In this case, the first g+2 equations (generator buses and slack bus)

directly imposes the value of the external constraints, so the number
of equations needed in the formulation in polar coordinates (g+2u) is

lower than the one in Cartesian coordinates.

This does not necessarily imply a reduction of the computation time.
In fact, using polar coordinates, it is necessary to calculate
trigonometric functions sin and cos.



Polar Coordinates Formulation -

Formulation in polar coordinates for the voltage and cartesian for the
admittances:

0=1 i=s for the unique slack bus

V=V i=1,2,..¢ and i=s, for the g
generator buses + the slack bus

P =V V(G Cosﬁ +B smﬁ) i=1,2,...gtu, for the g generator
i il buses + the u load buses

Q =VyYV(G,sin®, - B, cost,) i=g+1,..., g+u, for the load buses
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Line Power Flows
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Fig.LF_2. Power flow in the line ih.

S, =P +jO, V(V -V, )y +V* Yo (LF 2)

Polar S

Ve’ (Ve‘f'? Ve fﬁ)yw VY e (LF.3)

= V73, VY 4y e

Having defined with y, the argument of the admittance y,(i¢) and with
9 and 9, the arguments of the node voltage phasors.



Line Power Flows

Formulation in cartesian coordinates:

Py =(80+ 8 (Vi P+ V%)= o (Vi V4V, )+ b, (V V-V,
O ==(b+ by (V2 +V, %)+ £ (V, V=V, 'V, )+ b, (VV, 4+ VY,

Formulation in polar coordinates for the voltage and
cartesian for the admittances:

Pie = Viz (giz + gi(ie)) - VzVe (giz COS ﬁie + biz Sin ﬁie)

Qiz = _Vi2 (biz + bi(ie)) o VzVe (gie sin ﬁiz — biz COS ﬁie)
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Numerical solution via the NR method -

Since the equations that link the unknown network variables with those
that are known are non-linear, they must be resolved by using iterative
numerical procedures. startfing from a reasonable initial profile (for
instance, all the unknown amplitudes set equal to 1 per unit or to the
value of the slack bus, all the unknown phases set equal to the phase of
the slack bus), they are progressively updated until the convergence,
according to one of the procedures provided by the numerical analysis.
The selection of the inifial profiles is generally such that, if the process
converges, it can guarantee that the solution has a physical meaning
(i.e., voltages within bounds and line currents below the ampacity limits).
The most common iterative methods are based on the description of the
network in terms of the nodal admittance matrix, although there are
also different procedures.

The most common convergence criterion, as it will be explained below,
refers to the control of the active and reactive residuals, equal to the
differences between the corresponding fixed and calculated powers.



Numerical solution via the NR method -

There is a given differentiable, non-linear, function of x, f(x). We want to
determine the value of x, let's call it x*, so that the function f (x) has @
fixed value y*, namely the value of x that satisfies the equation:

fx*)=y* (LF.4)

We indicate with x(® a value close to x*, and their relative difference is:
A)C(O) =x* —X(O) (LF5)

If we develop f(x) in Taylor series at the point x9 we get:
(0) (Axm))z

2!

LF.6
X dx ¥ ( )

(0) 2
f(x(0)+AX(O))=f(X(O))+(;I—f) AX(O)+(d ]:)

For the values of xO that are sufficiently close to x*, we can write
(i.e., terms with order higher than the first are neglected):

©)
f(x*)gf(xm))_l_(;l_f) Ax©® (LF.7)

X



Numerical solution via the NR method -

The equation (LF.4) can be re-written as:
df (0)
dx
From (LF.8) we can obtain the value of Ax® which, however, will not be

equal to the one expressed in (LF.5), because of the introduced
approximation. Therefore, we will call it Ax(,

yE-fx?) Ay
axt - LTIE) B (1F9)
& ()
dx dx
where we set:
Ay = yE— f(x'?) (LF.]O)

Hence, if in the initial equation we add the value of Ax() derived by
(LF.?), we obtain a new value of x, let’s call it x(), that is closer to the
actual solution of the equation:



Numerical solution via the NR method -

O = @ L AD )

If we generalize in the v +1 -th iteration, we get:

x(v+1) — x(v) +A)C(v+1) = J

r

( Ay©
@ y

df 0)
)

@ _ f&x)

ar\°
(o

A v)
XV 2

df (v)
o

x(v) _ f(x(V))

df (v)
o

Jf y*=0
(LF.] 1)
af y*=0
Af y*=0
(LF.]Q)
A y*=0



Numerical solution via the NR method

where:

Ax(v+1) — x(v+1) _x(v)

Ay(”) _ y*—f(x(”)

Then, we obtain the following expression of (LF.12):

(df )(v) ) Ay(v) ,1f y* = ()
L e
dx —f(x(v)) it y*=0

This relation is the main iterative equation of Newton-Raphson.

(LF.13)

(LF.14)

The graphical representation of the process, in the case that y*=0, is
shown in Fig. LF_3 (which, among others, also justifies the classification of

the Newton-Raphson method as the method of the tangents).



Numerical solution via the NR method -

A

f(x)

fc)

* /(2) (1)‘ (0) g
X X X' X X
AX” Ax”

AX“—”:

Fig. LF_3. Graphical interpretation of the Newton-Raphson equation
(case y*=0).

The consecutive approximations stop when one of the two following
conditions are satisfied: A - g (LF.15)



Numerical solution via the NR method -

or.

f(x(wl)) <e if y*¥=0 (LF.] 6)

Ay < g af y*=0
where ¢ is called tolerance.

The parameter f(x(””) (or Ay"™" ) tends to become smaller (limit to zero)
as progressively the process converges to the desired solution: this
carachteristic justifies the term "residual .

f(x) 4

In the proposed procedure the calculation can be simplified with
the following modification: when the derivative in x%is computed
and the new value x!' is determined, it is possible — without
recalculating the new value that it assumes in x(V — to use again
the same one to determine the next value x(). A process like this,
as it is shown in Fig. (LF_4), takes more iterations, but the necessary
time to carry out each of them is significantly reduced since it is no
more needed to recalculate the derivative (which can be heavy,
especially for functions that have more variables).

v



Numerical solution via the NR method -

We conside the following system of s non-linear equations with s unknown

quantities:

Fi(x Xy, 0x)=y,*

LX), %, 0x)=y,*

[LF.17)

S (X, X, X )=y F

If we linearize the equations in the same way as we did for the functions of
one variable (namely, by truncating the development in Taylor series of the
vectorial function in the 1st-order terms), in the v+ 1-th iteration we get:

af
0x,

9/,

df;

0x,
9f,

0x,

9/,
0x,

0x,

9,

0x,

T
© ox,

95
- ox,

9,

V)

A T Ay T
Ax, Ay, (LF.] 8)

o0x

s



Numerical solution via the NR method

Or, in a compact matrix formulation:

[7]" x[Ax]"" =[Ay]" [LF.19)
having set, as in the case of one variable:
Ax*D = 4D _ ) (LF.ZO)
and
N— 2
where _ _
o
ox, ox, 0X,
% o %

[J]= ox, ox, O ox (LF'QQ)

N

o 9, o

| dx,  0x, 0x

S



Numerical solution via the NR method -

The (LF.18) is the iterafive equation of Newton-Raphson in the case of a
system of s linear equations of s variables. Its inversion allows to determine

the updated value of the s-tuple that approximates the solution of the system
in the v +1-th iteration. The new s-tuple is:

where, based on (LF.18)

1(v+1)

X

u%)

o,

| 0X,

7(v+1)

of

0x,

o

0x,

X

u%)

o,

0x,

of,
0x,
o,

0x,

1(v)

1(v)

7(v+1)

[LF.23)

(LF.24)




Numerical solution via the NR method -

In compact form:

(] =[x]" =[Ax]" [LF.25)

where
[Ax]" = ([7]7) x[&]” [LF26)

As in the case of one variable only, in order 1o solve the system of (LF.18),
we assume an s-tuple of values (x;@, x,0,... x®). We calculate the
Jacobian for this set and then, using (LF.21) and (LF.22), we determine
the s-tuple (x,V, x,(V,..., x (D). At this moment we recalculate the Jacobian

in the new determined point and we determine the next point, until the
desired accuracy is achieved.



Numerical solution via the NR method -

Application of the Newton-Raphson method in the Loadflow (Cartesian):

a) Load buses:

where

P P 1" (v+1) (v)
vV | [ AV | | AP (LF.27)
Q0 | 90 AV" AQ
V' i aV"
APY = P P LF.28
AQY =0 — Q" LF.29
(AV) = (V) = (v LF.30
@V =) =) 3)

where the expressions of P, and Q; are given here: - and the Jacobian is a 2u x 2u
matrix. The derivatives that form the Jacobian are equal to:



Numerical solution via the NR method -

aPi' = GzeVi' + BieVz
J V. (LF.32)
3 S
- a})l' = 2Gzi‘/" + (Gié‘/é‘ o Bw‘/én)
IV, P
4
(;9—‘}}" = ‘BieVi' + GieVi”
¢
Jox 17 5p e | ” [LF.33)
GV: =2G,V, +Z(Bizve +G, VY, )
(=1




Numerical solution via the NR method -

an - _BizVi' + GieVi”
g . v [LF.34)
; an = _2Bii‘/i' - E(Biévé' T Gie‘/z”)
9V,
(#1
ggl' =-G,V. -B,V,
¢
Jox 3 s LF.35
v an - _2Bii‘/i" + E(Gz‘eve‘ - Bzevéu) ( )
v,
(#1




Numerical solution via the NR method

b) Generator buses:

where

1v)
oP
(v+l) (v)
_ov™. AV AP
oV? AV" AV?
avn
(AVz )(V) — Vz* _ VZ(V)

[LF.36)

(LF.37)

and the elements of the Jacobian are given by (LF.32), (LF.33) — the
partial derivatives of the active power injections - and (LF.38), (LF.39),
shown in the following slide (the partial derivatives of the squares of the

voltages).



Numerical solution via the NR method -

o) _,
v,
) LF.38
JVR a(‘/l2)=2V' ( )
where oV, l
o) _,
v,
) LF.39
P, e
E

From the (LF.37) we can note that

the two sub-matrices 4V>/dV  and

V19V in (LF.36) have all their elements equal to zero, except for the

ones in the main diagonal.



Numerical solution via the NR method -

c) Slack bus:
V.=V
T [LF.40)
V' =0
To sum up, we obtain:
_ 1(v) B 1(v)
I Ipx AV (v+D) AP
Jor  Jox X AV =| ACQ (LF.41)
Jow iy A(V?)




Numerical solution via the NR method -

Application of the Newton-Raphson method in the Loadflow (Polar):
a) Load buses:

: 1)
E E (v+l) (v)
9V a9 | | AV | _| AP (LF.42)
00 00 | | AV AQ
vV | a9
a) Generator buses:
| (v) (v+])
9P 1 oP AV _rap]” (LF.43)
vV | o A

In the polar coordinate formulation, the number of equations is g and NOT
2¢. Indeed, the other g equations that correspond to the voltage
magnitudes of the generator buses are not used in the calculation but serve
only to define the known parameters. [AV] and [A3] are the arrays of the
variations of the bus voltage magnitudes and phases. The elements of the
Jacobian that appearin (LF.42) and (LF.43), calculated based on - are:



Numerical solution via the NR method -

an = YzeVz COS(l?,- - ﬁz - yié)

J oV [LF.44)
:
) 25, COS%#EYVCOS (=0 1)
e;éz

(;:)g =Y,V Vésin(ﬁi _ﬁg _yz‘z)
il o (1745

" —‘CZYM sin(; -9, ~7,)

(=1




Numerical solution via the NR method -

30, |

a%=KM$M@‘@‘W)

LF.46
Joy ( . )
o g‘Q/ =—2YVsm)/”+EYVsm ﬁ —ﬂg—m)
é;éz

gg =-Y,V.V,cos(9, -9, -7,)

. S [LF.47)




Numerical solution via the NR method -

To sum up, we obtain:

1™ A+l T 1)

jpv I o o AV _ AP (LF.48)

ov Joo AY - AQ




Numerical solution via the NR method -

Application of the Newton-Raphson method in the Loadflow (Mixed): .

OP,
v,
oP

GVZ =2G.V, + EVé (G, cosV), + B, sin,)

=V,(G,cos®, + B, sin1,)

(LF.49)

(#1

oP vy
01,
51}; =—VlEV(G sin, - B, cos )

I (=1

(G, sind, - B, cos ¥, )

[LF.50)




Numerical solution via the NR method -

Application of the Newton-Raphson method in the Loadflow (Mixed):

99, =V,(G,sind, - B, cos ¥, )

v, [LF.51)
0. :
MQ/; =-2B.V, + ;VZ (G, sin®, - B, cos )

3% =-VV,(G,cos9, + B,sin,)
‘ [LF.52)

90, =VZEV(G cos}, + B, sin,)

[ (=0




Numerical solution via the NR method -

F’1 50 Km 140 MW
—> —
Q, 40 Mvar

280 MW
90 Mvar

Fig. LF_5: A network of 3 buses

In the network shown in Fig. LF_5, it is given that:

a) Bus 1 receives an active and reactive power injection P; and Q;, to be
determined, and the voltage magnitude ¥, is known and is equal to V; = 240 kV;

b) Bus 2 distributes active power P, = 140 MW and reactive power O, = 40 MVAr;

c) Bus 3 distributes active power P; = 280 MW and reactive power O3 = 90 MV Ar;

d) The three lines are overhead lines, their conductors in Al-Ac with diameter equal to
29.3 mm. They are characterized by the same fundamental constant parameters (r
=0.0717 Q/km, x = 0.424 Q/km, b = 2.6410°¢ S/km, g=0).

e) The three network buses have nominal voltage equal to 220 kV (7, = 220 kV).



Numerical solution via the NR method

563- 332 -375+,222 -188+/11.1
[Y]=| -3.75+j222 5.63-j332 ~-188+jl11.1
_1.88+j11.1 —188+j11.1 3.75-,222

S;p=227+81 p=3MW S =224+67

S = 4284158 , , S, = 138+j40
—f s,=o01477 AT WA o ggeio7
—’ ‘__

Vy = 240 kV V> = 229.9 KV

vi = 1,001 V2= 1,045

0 =0° 0, = 4,692°
p=6MW p=1MW
q =21 Mvar g =-6 Mvar

Sis = 195456 l l S5 = 85433

S; =280+ 89 V3 =221,5kV
v3 = 1,007

03 = -8,543°



Numerical solution via the NR method -

lteration 1:

O _sasss 18767 2zsziio 22110977
o, av, 00, 00,
o | B_isrer Bozssar 5o 110077 252232044
T T | _| v, av, 09, 90,
Jo T
ov Yo 9 310838 2o q10977 %2l s50712 28767
av, av, 09, 00,
% 110977 o088 Soi1s767 9% - 39239
av, v, 09, 09,
o1 TR T S10s88 ] | 00522
AP | | “28-F | | -2.6294 AV | _| 00119
AQ ~04-0, 17136 AD ~0.0848
09-0, | | 02367 | | 01515 |




