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Introduction
In a network with s nodes, the s complex voltages and the s 
complex node currents are linked by s equations with

complex variables and coefficients representing the internal network 
constraints.

The 2s complex voltages and currents are equivalent to 4s real variables. On 
the other hand, we have 2s linear equations with real variables and 
coefficients, which are obtained by separating the real and imaginary parts (or 
the modules and the arguments).
Therefore, from the 4s real variables, 2s can be fixed arbitrarily and the 
remaining 2s are calculated by solving the system of equations of the network.
When the system is solved, and therefore all voltages and currents are known, 
we can calculate:
- P and Q injected or absorbed by the nodes
- branches powers and currents
- network losses (both active and reactive, corresponding to the balance 

between powers injected and absorbed by the nodes). 
If the network operating conditions can be represented imposing as external 
constraints only voltage/current amplitudes and phases, the power flows can 
be calculated by solving a simple system of linear equations.



In practice, the operating conditions imposed on the networks 
(external constraints) are expressed by fixing other parameters. This 
implies that the system of equations to be solved becomes non-linear. 
In particular:
In the load buses P and Q demands are (usually) fixed (Pi* and Qi*).
In practice, it is inappropriate to represent the various loads by 
constant admittances (i.e., asynchronous motors absorb active power 
almost independently of the voltage, with variations in the range of 
+10%; gas-discharge lamps and incandescent lamps, even if they 
absorb power that varies with the voltage, do not follow a quadratic 
law).

The dependency on the voltage of the
active/reactive powers absorbed by the loads
can be expressed by exponential models where 
the values of the exponent coefficients depend
to the  nature of the load and, in some cases, it can 
also be set = 0.
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Introduction
For the generator buses, it is convenient to fix the P that is injected from them 
into the grid (Pi*) and the amplitude of voltage V (Vi*).
Ø For power transmission networks, the value Pi* that each power plant is 

asked to provide (at a given time step) is usually selected in accordance to 
their dispatching.

Ø Fixing the Vi*, rather than the Q, is convenient for the following reasons:
1. fixing the voltage (typically at a value between the rated voltage Vn 

and 1.1Vn according to the location of the power plants and the 
distance with respect to the loads), means that we set the voltage in 
the network key points (often scattered throughout the network). So the 
solution of the equations provides a solution acceptable for the 
network operation. This choice also facilitates the convergence of the 
iterative procedure for the solution of the LF equations (see next).

2. The Q of the generators can vary between the max-limit (i.e., 
generators over excitation) and the min-limit (i.e., generators under 
excitation) by simply varying the their excitation current. Therefore, it is 
convenient to accept to operate each power plant with the Q that is 
provided by the calculation and which allows to obtain the 
predetermined voltages.



Introduction
We have justified that both for loads and generators, it is convenient to fix the 
P.
It should be noted, however, that it is not possible to assign arbitrary values of P 
at all nodes because this would be equal to arbitrarily setting the network 
losses, which is clearly absurd. In fact, the losses are not known initially, but are 
calculated together with the power flows, after having solved the LF 
equations.
It is therefore allowable to arbitrarily set no more than (s-1) active powers.

Consequently, for one of the nodes, that can be chosen to coincide in the 
numbering with the s-th node, the amplitude and the phase of the voltage are 
fixed. This node is called slack bus, as the active power, for this node, is equal 
to the balance between the active powers of generators/loads and the 
power losses.
As slack bus we can choose a generator where a significant power is installed. 
In this node the phase of the voltage is fixed to zero; this is equivalent to 
measuring the phases of the other (s-1) node voltages using as a reference the 
slack bus voltage phasor.



Introduction

Summary of the parameters that are imposed and the ones that 
need to be determined for the various types of buses

Type of bus Imposed parameters  
(in total 2s) 

Parameters to be 
determined (in total 2s) 

Generator buses Pg Vg Qg arg (Vg) 

Load buses Pc Qc Vc arg (Vc) 

Slack bus Vn arg (Vn) =0 Pn Qn 
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Cartesian Coordinates Formulation

We will use the following notations:
   voltage of the i-th node;

   voltage of the l -th node;

   il  element of the admittance matrix         ;

The complex power injected, or absorbed, from the i-th node can be 
written as:

       

replacing the expression that gives the complex current inserted or 
extracted from the node i we get:

Y[ ]

Vi =Vi
' + jVi

''

V
l
=V

l

' + jV
l

''

Yil =Gil + jBil

Si = Pi + jQi =Vi I i

Si =Vi Y ilV l
l=1

s

∑ = Vi
' + jVi

''( ) Gil − jBil( )
l=1

s

∑ Vl

' − jVl

''( )



Cartesian Coordinates Formulation

Then, the injected active and reactive powers of the i-th node are:
      

The module (squared) of the voltage at the i-th node are:

Vi
2 =Vi

'2 +Vi
''2

Pi =Vi
' GilVl

' −BilVl

''( )+Vi
'' BilVl

' +GilVl

''( )
l=1

s

∑
l=1

s

∑

Qi = −Vi
' BilVl

' +GilVl

''( )+Vi
'' GilVl

' −BilVl

''( )
l=1

s

∑
l=1

s

∑

⎧

⎨
⎪

⎩
⎪



The entire system of equations in cartesian coordinates assumes the
following form:

0 =Vi
''                                                                 

Vi
*2 =Vi

'2 +Vi
''2                                                      

                                                                         

Pi
* =Vi

' GilVl

' −BilVl

''( )
l=1

s

∑ +Vi
'' BilVl

' +GilVl

''( )
l=1

s

∑   

        

Qi
* = −Vi

' BilVl

' +GilVl

''( )
l=1

s

∑ +Vi
'' GilVl

' −BilVl

''( )
l=1

s

∑     

The number of equations is: 1+(g+1)+(g+u)+u=2(g+u+1)=2s.

i=s for the unique slack bus
i=1,2,...,g and i=s, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + u load buses

i=g+1,..., g+u for the load buses

Cartesian Coordinates Formulation
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Polar Coordinates Formulation

By indicating with φi, ϑi respectively the arguments of the current and voltage 
of node i and with γil the argument of the admittance      , we can write  Yil

Vi =Vie
jϑ i

Ii = Iie
jφi

Yil =Yile
jγil

.

voltage at the i-th node;

current at the i-th node;

element il of the admittance matrix ;

The complex power at the i-th node can be written as:

Si = Pi + jQi =Vi I i
Using again the network admittance matrix to express the injected node 
current, we obtain:

Si =Vi Y ilV l
l=1

s

∑ = ViY ilV l
l=1

s

∑ = ViVlYile
j ϑ i−ϑ l−γil( )

l=1

s

∑

Y[ ]



Then, the active and reactive powers at the i-th node will be:

Pi = ViVlYil cos ϑ i −ϑ l −γ il( )
l=1

s

∑

Qi = ViVlYil sin ϑ i −ϑ l −γ il( )
l=1

s

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

Polar Coordinates Formulation

( )LF.1



The system of equations for the solution of the load flow problem in
polar coordinates assumes therefore the following form:

0 =ϑ i                                                                 
Vi

* =Vi                                                      
                                                                         

Pi
* =Vi Vl

l=1

s

∑ Yil cos ϑ il −γ il( ) 

        

Qi
* =Vi Vl

l=1

s

∑ Yil sin ϑ il −γ il( ) 

The number of equations is: 1+(g+1)+(g+u)+u=2s.

i=s for the unique slack bus
i=1,2,...,g and i=s, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + the u load buses

i=g+1,..., g+u, for the load buses

Polar Coordinates Formulation



In this case, the first g+2 equations (generator buses and slack bus) 
directly imposes the value of the external constraints, so the number 
of equations needed in the formulation in polar coordinates (g+2u) is 
lower than the one in Cartesian coordinates.

This does not necessarily imply a reduction of the computation time. 
In fact, using polar coordinates, it is necessary to calculate 
trigonometric functions sin and cos.

Polar Coordinates Formulation



Formulation in polar coordinates for the voltage and cartesian for the
admittances:

0 =ϑ s
''                                                                 

Vi
* =Vi                                                      

                                                                         

Pi
* =Vi Vl

l=1

s

∑ Gil cosϑ il +Bil sinϑ il( ) 

        

Qi
* =Vi Vl

l=1

s

∑ Gil sinϑ il −Bil cosϑ il( ) 

i=s for the unique slack bus
i=1,2,...,g and i=s, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + the u load buses

i=g+1,..., g+u, for the load buses

Polar Coordinates Formulation
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Line Power Flows
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Fig.LF_2. Power flow in the line ih.

Sil = Pil + jQil =Vi V i −V l( ) yil +Vi
2 y

i ( il )

Sil =Vi V i −V l( ) yil +Vi
2 y

iil( )

=Vie
jϑ i Vie

− jϑ i −Vle
− jϑ l( ) yile− jγil +Vi2yi il( )e

− jγi

=Vi
2yile

− jγil −ViVl yile
j ϑ i−ϑ l−γil( ) +Vi

2yi il( )e
− jγi

Polar

Having defined with γi the argument of the admittance yi(il ) and with 
𝝑i and 𝝑l the arguments of the node voltage phasors.

( )LF.2

( )LF.3

iℓ



Formulation in cartesian coordinates:

Pil = gil + gi il( )( ) Vi '2+Vl ''
2( )− gil Vi 'Vl '+Vi ''Vl ''( )+ bil Vi 'Vl ''−Vl 'Vi ''( )

Qil = − bil + bi il( )( ) Vi '2+Vl ''
2( )+ gil Vi 'Vl ''−Vl 'Vi ''( )+ bil Vi 'Vl '+Vi ''Vl ''( )

Formulation in polar coordinates for the voltage and
cartesian for the admittances:

Pil =Vi
2 gil + gi il( )( )−ViVl gil cosϑ il + bil sinϑ il( )

Qil = −Vi
2 bil + bi il( )( )−ViVl gil sinϑ il − bil cosϑ il( )

Line Power Flows



Outline
Introduction

Cartesian coordinates 
formulation

Polar coordinates formulation
Line power flows

Numerical solution via the NR 
method



Numerical solution via the NR method

Since the equations that link the unknown network variables with those 
that are known are non-linear, they must be resolved by using iterative 
numerical procedures: starting from a reasonable initial profile (for 
instance, all the unknown amplitudes set equal to 1 per unit or to the 
value of the slack bus, all the unknown phases set equal to the phase of 
the slack bus), they are progressively updated until the convergence, 
according to one of the procedures provided by the numerical analysis. 
The selection of the initial profiles is generally such that, if the process 
converges, it can guarantee that the solution has a physical meaning 
(i.e., voltages within bounds and line currents below the ampacity limits). 
The most common iterative methods are based on the description of the 
network in terms of the nodal admittance matrix, although there are 
also different procedures.

The most common convergence criterion, as it will be explained below, 
refers to the control of the active and reactive residuals, equal to the 
differences between the corresponding fixed and calculated powers.



Numerical solution via the NR method

There is a given differentiable, non-linear, function of x, f (x). We want to 
determine the value of x, let’s call it x*, so that the function f (x) has a 
fixed value y*, namely the value of x that satisfies the equation:

We indicate with x(0) a value close to x*, and their relative difference is:

If we develop f (x) in Taylor series at the point x(0) we get:

For the values of x(0) that are sufficiently close to x*, we can write
(i.e., terms with order higher than the first are neglected): 

( )LF.4f (x*) = y*

Δx(0) = x*−x(0) ( )LF.5

f (x(0) +Δx(0) ) = f (x(0) )+ df
dx
"

#
$

%

&
'
(0)

Δx(0) + d 2 f
dx2

"

#
$

%

&
'

(0) Δx(0)( )
2

2!
+… ( )LF.6

f (x*) ≅ f (x(0) )+ df
dx
"

#
$

%

&
'
(0)

Δx(0) ( )LF.7



Numerical solution via the NR method

The equation (LF.4) can be re-written as:

From (LF.8) we can obtain the value of Δx(0) which, however, will not be
equal to the one expressed in (LF.5), because of the introduced
approximation. Therefore, we will call it Δx(1).

where we set:

Hence, if in the initial equation we add the value of Δx(1) derived by
(LF.9), we obtain a new value of x, let’s call it x(1), that is closer to the
actual solution of the equation:

( )LF.8f (x(0) )+ df
dx
!

"
#

$

%
&
(0)

Δx(0) ≅ y*

Δx(1) = y*− f (x
(0) )

df
dx
#

$
%

&

'
(
(0) =

Δy(0)

df
dx
#

$
%

&

'
(
(0) ( )LF.9

Δy(0) = y*− f (x(0) ) ( )LF.10



Numerical solution via the NR method

If we generalize in the         -th iteration, we get:

( )LF.11x(1) = x(0) +Δx(1) =

x(0) + Δy(0)

df
dx
"

#
$

%

&
'
(0)

x(0) − f (x(0) )
df
dx
"

#
$

%

&
'
(0)

)

*

+
+
+

,

+
+
+

,if   y*≠ 0

,if   y*= 0

x(ν+1) = x(ν ) +Δx(ν+1) =

x(ν ) + Δy(ν )

df
dx
"

#
$

%

&
'
(ν )

x(ν ) − f (x(ν ) )
df
dx
"

#
$

%

&
'
(ν )

)

*

+
+
+

,

+
+
+

,if   y*≠ 0

,if   y*= 0
( )LF.12

ν +1



Numerical solution via the NR method

where:

Then, we obtain the following expression of (LF.12):  

This relation is the main iterative equation of Newton-Raphson.

The graphical  representation of the process, in the case that y*=0, is 
shown in Fig. LF_3 (which, among others, also justifies the classification of 
the Newton-Raphson method as the method of the tangents).

( )LF.13Δx(ν+1) = x(ν+1) − x(ν )

Δy(ν ) = y*− f x(ν )( )

( )LF.14df
dx
!

"
#

$

%
&
(ν )

Δx(ν+1) =
Δy(ν )

− f x(ν )( )
)
*
+

,+

,if   y*≠ 0
,if   y*= 0



Numerical solution via the NR method

Fig. LF_3. Graphical interpretation of the Newton-Raphson equation
(case y*=0).

The consecutive approximations stop when one of the two following 
conditions are satisfied: ( )LF.15Δx(ν+1) < ε



Numerical solution via the NR method
or:

where ε is called tolerance. 

The parameter (or ) tends to become smaller (limit to zero)
as progressively the process converges to the desired solution: this
carachteristic justifies the term residual .

LF.16( )
f x(ν+1)( ) < ε
Δy(ν+1) < ε

"
#
$

%$

,if   y*= 0

,if   y*≠ 0

!
f x(ν+1)( ) Δy(ν+1)

" "

oppure

I�[�

[
[���

[ ���[��
�[��
�[ ���

…

0HWRGR�GL�1(:721�5$3+621�������Cont.
oppure

I�[�

[
[���

[ ���[��
�[��
�[ ���

…

0HWRGR�GL�1(:721�5$3+621�������Cont.

In the proposed procedure the calculation can be simplified with 
the following modification: when the derivative in x(0) is computed 
and the new value x(1) is determined, it is possible – without 
recalculating the new value that it assumes in x(1) – to use again 
the same one to determine the next value x(2’). A process like this, 
as it is shown in Fig. (LF_4), takes more iterations, but the necessary 
time to carry out each of them is significantly reduced since it is no 
more needed to recalculate the derivative (which can be heavy, 
especially for functions that have more variables).



Numerical solution via the NR method
We conside the following system of s non-linear equations with s unknown
quantities:

If we linearize the equations in the same way as we did for the functions of 
one variable (namely, by truncating the development in Taylor series of the 
vectorial function in the 1st-order terms), in the         -th iteration we get:   

LF.17( )

f1(x1, x2,…, xs ) = y1 *
f2 (x1, x2,…, xs ) = y2 *
…
fs (x1, x2,…, xs ) = ys *

⎧

⎨
⎪
⎪

⎩
⎪
⎪

LF.18( )

ν +1

∂ f1
∂x1

  ∂ f1
∂x2

  …  ∂ f1
∂xs

∂ f2
∂x1

  ∂ f2
∂x2

  …  ∂ f2
∂xs

…    …    …   …
∂ fs
∂x1

  ∂ fs
∂x2

  …  ∂ fs
∂xs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(ν )

×

Δx1
Δx2
....
Δxs

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν+1)

=

Δy1
Δy2
....
Δys

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )



Numerical solution via the NR method
Or, in a compact matrix formulation:

having set, as in the case of one variable:

and

where

LF.19( )J[ ](ν ) × Δx[ ](ν+1) = Δy[ ](ν )

LF.20( )Δxi
(ν+1) = xi

(ν+1) − xi
(ν )

Δyi
(ν ) = yi *− fi x1

(ν ), x2
(ν ),…, xs

(ν )( ) LF.21( )

J[ ] =

∂f1
∂x1

  ∂f1
∂x2

  …  ∂f1
∂xs

∂f2
∂x1

  ∂f2
∂x2

  …  ∂f2
∂xs

…    …    …   …
∂fs
∂x1

  ∂fs
∂x2

  …  ∂fs
∂xs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

LF.22( )



Numerical solution via the NR method
The (LF.18) is the iterative equation of Newton-Raphson in the case of a
system of s linear equations of s variables. Its inversion allows to determine
the updated value of the s-tuple that approximates the solution of the system
in the -th iteration. The new s-tuple is:

where, based on (LF.18)

LF.23( )

Δx1

Δx2

.....
Δxs

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν+1)

=

∂f1
∂x1

  ∂f1
∂x2

  …  ∂f1
∂xs

∂f2
∂x1

  ∂f2
∂x2

  …  ∂f2
∂xs

…    …    …   …
∂fs
∂x1

  ∂fs
∂x2

  …  ∂fs
∂xs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(ν )⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

−1

×

Δy1

Δy2

.....
Δys

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

LF.24( )

ν +1

x1
x2
...
xs

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν+1)

=

x1
x2
...
xs

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

+

Δx1
Δx2
.....
Δxs

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν+1)



Numerical solution via the NR method
In compact form:

where

As in the case of one variable only, in order to solve the system of (LF.18),
we assume an s-tuple of values (x1(0), x2(0),…, xs(0)). We calculate the
Jacobian for this set and then, using (LF.21) and (LF.22), we determine
the s-tuple (x1(1), x2(1),…, xs(1)). At this moment we recalculate the Jacobian
in the new determined point and we determine the next point, until the
desired accuracy is achieved.

LF.25( )x[ ](ν+1) = x[ ](ν ) = Δx[ ](ν+1)

Δx[ ](ν+1) = J[ ](ν )( )
−1
× Δy[ ](ν ) LF.26( )



Numerical solution via the NR method
Application of the Newton-Raphson method in the Loadflow (Cartesian):
a) Load buses:

where

where the expressions of Pi and Qi are given here: and the Jacobian is a 2u x 2u
matrix. The derivatives that form the Jacobian are equal to:

LF.27( )
∂P
∂V '

∂P
∂V ''

∂Q
∂V '

∂Q
∂V ''

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '
ΔV ''

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

LF.28( )ΔPi
(ν ) = Pi

* −Pi
(ν )

ΔQi
(ν ) =Qi

* −Qi
(ν ) LF.29( )

ΔV '( )i
(ν+1)

= V '( )i
(ν+1)

− V '( )i
(ν ) LF.30( )

ΔV ''( )i
(ν+1)

= V ''( )i
(ν+1)

− V ''( )i
(ν ) LF.31( )



Numerical solution via the NR method

LF.32( )JPR :

∂Pi
∂Vl

' =GilVi
' +BilVi

''

∂Pi
∂Vi

' = 2GiiVi
' + GilVl

' −BilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JPX :

∂Pi
∂Vl

'' = −BilVi
' +GilVi

''

∂Pi
∂Vi

'' = 2GiiVi
'' + BilVl

' +GilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.33( )



Numerical solution via the NR method

LF.34( )JQR :

∂Qi

∂Vl
' = −BilVi

' +GilVi
''

∂Qi

∂Vi
' = −2BiiVi

' − BilVl
' +GilVl

''( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JQX :

∂Qi

∂Vl
'' = −GilVi

' −BilVi
''

∂Qi

∂Vi
'' = −2BiiVi

'' + GilVl
' −BilVl

''( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.35( )



Numerical solution via the NR method
b) Generator buses:

where

and the elements of the Jacobian are given by (LF.32), (LF.33) – the
partial derivatives of the active power injections - and (LF.38), (LF.39),
shown in the following slide (the partial derivatives of the squares of the
voltages).

LF.36( )
∂P
∂V '

∂P
∂V ''

∂V 2

∂V '
∂V 2

∂V ''

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '
ΔV ''

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔV 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

ΔV 2( )i
(ν )
=Vi

2* −Vi
2(ν ) LF.37( )



Numerical solution via the NR method

where

From the (LF.37) we can note that the two sub-matrices                 and
in (LF.36) have all their elements equal to zero, except for the 

ones in the main diagonal.

LF.38( )JVR :

∂ Vi
2( )

∂Vl
' = 0

∂ Vi
2( )

∂Vi
' = 2Vi

'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.39( )JVX :

∂ Vi
2( )

∂Vl
'' = 0

∂ Vi
2( )

∂Vi
'' = 2Vi

''

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∂V 2 /∂V '

∂V 2 /∂V ''



Numerical solution via the NR method

c) Slack bus:

To sum up, we obtain:

LF.40( )Vs
' =Vs

'

Vs
'' = 0

⎧
⎨
⎪

⎩⎪

LF.41( )
JPR JPX
JQR JQX
JVR JVX

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '

ΔV ''

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν+1)

=
ΔP
ΔQ

Δ V 2( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )



Numerical solution via the NR method
Application of the Newton-Raphson method in the Loadflow (Polar):
a) Load buses:

a) Generator buses:

In the polar coordinate formulation, the number of equations is g and NOT 
2g. Indeed, the other g equations that correspond to the voltage 
magnitudes of the generator buses are not used in the calculation but serve 
only to define the known parameters. [ΔV] and [Δϑ] are the arrays of the 
variations of the bus voltage magnitudes and phases. The elements of the 
Jacobian that appear in (LF.42) and (LF.43), calculated based on           are:  

LF.42( )
∂P
∂V

∂P
∂ϑ

∂Q
∂V

∂Q
∂ϑ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

∂P
∂V

∂P
∂ϑ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

= ΔP[ ](ν ) LF.43( )



Numerical solution via the NR method

LF.44( )JPV :

∂Pi
∂Vl

=YilVi cos ϑ i −ϑ l −γ il( )

∂Pi
∂Vi

= 2YiiVi cosγ ii + YilVl cos ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.45( )JPϑ :

∂Pi
∂ϑ l

=YilViVl sin ϑ i −ϑ l −γ il( )

∂Pi
∂ϑ i

= −Vi YilVl sin ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪



Numerical solution via the NR method

LF.46( )JQV :

∂Qi

∂Vl

=YilVi sin ϑ i −ϑ l −γ il( )

∂Qi

∂Vi
= −2YiiVi sinγ ii + YilVl sin ϑ i −ϑ l −γ il( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.47( )JQϑ :

∂Qi

∂ϑ l

= −YilViVl cos ϑ i −ϑ l −γ il( )

∂Qi

∂ϑ i

=Vi YilVl cos ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪



Numerical solution via the NR method

To sum up, we obtain:

LF.48( )
JPV JPϑ
JQV JQϑ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )



Numerical solution via the NR method
Application of the Newton-Raphson method in the Loadflow (Mixed):

LF.49( )

LF.50( )

∂Pi
∂Vl

=Vi Gil cosϑ il +Bil sinϑ il( )

∂Pi
∂Vi

= 2GiiVi + Vl
l≠i
∑ Gil cosϑ il +Bil sinϑ il( )

∂Pi
∂ϑ l

=ViVl Gil sinϑ il −Bil cosϑ il( )

∂Pi
∂ϑ i

= −Vi Vl
l≠i
∑ Gil sinϑ il −Bil cosϑ il( )



Numerical solution via the NR method
Application of the Newton-Raphson method in the Loadflow (Mixed):

LF.51( )

LF.52( )

∂Qi

∂Vl

=Vi Gil sinϑ il −Bil cosϑ il( )

∂Qi

∂Vi
= −2BiiVi + Vl

l≠i
∑ Gil sinϑ il −Bil cosϑ il( )

∂Qi

∂ϑ l

= −ViVl Gil cosϑ il +Bil sinϑ il( )

∂Qi

∂ϑ i

=Vi Vl
l≠i
∑ Gil cosϑ il +Bil sinϑ il( )



Numerical solution via the NR method

Fig. LF_5: A network of 3 buses

In the network shown in Fig. LF_5, it is given that:
a) Bus 1 receives an active and reactive power injection P1 and Q1, to be

determined, and the voltage magnitude V1 is known and is equal to V1 = 240 kV;
b) Bus 2 distributes active power P2 = 140 MW and reactive power Q2 = 40 MVAr;
c) Bus 3 distributes active power P3 = 280 MW and reactive power Q3 = 90 MVAr;
d) The three lines are overhead lines, their conductors in Al-Ac with diameter equal to

29.3 mm. They are characterized by the same fundamental constant parameters (r
= 0.0717 Ω/km, x = 0.424 Ω/km, b = 2.64�10-6 S/km, g≅0).

e) The three network buses have nominal voltage equal to 220 kV (Vn = 220 kV).



Numerical solution via the NR method

Y[ ] =
5.63− j33.2 −3.75+ j22.2 −1.88+ j11.1
−3.75+ j22.2 5.63− j33.2 −1.88+ j11.1
−1.88+ j11.1 −1.88+ j11.1 3.75− j22.2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥



Numerical solution via the NR method
Iteration 1:

JPV JPϑ
JQV JQϑ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

0

=

∂P2
∂V2

= 5.2888 ∂P2
∂V3

= −1.8767 ∂P2
∂ϑ 2

= 35.3110 ∂P2
∂ϑ3

= −11.0977

∂P3
∂V2

= −1.8767 ∂P3
∂V3

= 3.5827 ∂P3
∂ϑ 2

= −11.0977 ∂P3
∂ϑ3

= 23.2044

∂Q2

∂V2
= 31.0838 ∂Q2

∂V3
= −11.0977 ∂Q2

∂ϑ 2

= −5.9712 ∂Q2

∂ϑ3

=1.8767

∂Q3

∂V2
= −11.0977 ∂Q3

∂V3
= 32.0288 ∂Q3

∂ϑ 2

=1.8767 ∂Q3

∂ϑ3

= −3.9239

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

=

−1.4−P1
−2.8−P2
−0.4−Q1
−0.9−Q2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−1.0588
−2.6294
1.7136
0.2367

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

1

=

0.0522
0.0119
−0.0848
−0.1515

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!


